7 research outputs found

    Design of a Solar Panel Deployment and Tracking System for Pocketqube Pico-Satellite

    Get PDF
    Modularized small satellites will have even greater potential with better energy supply. In this paper, a PocketQube solar panel deployment and tracking system will be presented. The system is designed for a 3P PocketQubes. During the designing phase, trade-off analysis is done to meet the balance of weight, dimension and efficiency. Reliability, manufacturability, and cost are also considered from the beginning, as commercial production and launch are expected. The CAD design, dynamics analysis, motion simulation, and rendering for the project are undertaken by Solidworks, whereas Abaqus CAE is utilized for the finite element analysis of the vibration test of the panels. In the gimbal subsystem, we use two micro stepper motor to drive the panels via a two-axis gearbox, enabling the panels to track the sun omnidirectionally. In the panel subsystem, two types of customized spring hinges are designed. Robust and verified parts, such as burner resistors, are chose for the control and deployment system. After the continuous optimization process throughout the design phase, by comparing different manufacturing processes technologies, materials, and design details, the full scale prototypes of the gimbal subsystem were built and tested. In the end, the most feasible solution, as well as the suggestions for the development, were put forward

    The Age of Advancing PocketQube Technology

    Get PDF
    The PocketQube Standard (5cm cube) is a quickly advancing technology branch which can trace it origins back to the CubeSat standard. The community has grown from a handful of builders to in excess of 25 with most of the developments coming from Europe. Alba has pioneered standardized deployers called AlbaPods, capable of launching 6p and 96p worth of up mass. 9 PocketQubes are scheduled to launch in 2019 on two separate Alba Launch Clusters, offering the community an outlet to get to orbit regularly for the first time. In addition, Alba has developed the most advanced PocketQube in its class, Unicorn-2. Unicorn-2 can generate 20 watt peak, 10-15w OAP, 200kb/s downlink and 5 degrees pointing on a full ADCS

    Compact and Planar End-fire Antenna for PicoSat and CubeSat Platforms to Support Deployable Systems

    Get PDF
    A miniaturized planar Yagi-Uda antenna for integration with PicoSats or other SmallSat missions is proposed. Miniaturization techniques, such as meandering and 1-D artificial dielectric concepts to reduce the guided wavelength, are employed to overcome space constraints imposed by the SmallSat footprint while still maintaining good performance for the FR-4 antenna. Simulations and measurements have been carried out on the Unicorn-2 PicoSat chassis from Alba Orbital and are in good agreement. Also, antenna dimensions have been reduced between 15% and 66% when compared to a more conventional planar Yagi-Uda antenna working at the same frequency. This compactness allows for simple integration with the deployable solar panel array of the Unicorn-2 PicoSat spacecraft. Full end-fire radiation is achieved and peak gain values are about 5 dBi for the antenna when fully integrated on the satellite chassis, offering an attractive solution for downlink connectivity. This compact antenna design can also be used within an array for beam steering or integrated within the solar cell modules of other PicoSats, CubeSats and SmallSats. Applications include Earth observation, remote sensing, as well as SmallSat to ground station communications. The planar Yagi-Uda antenna may also be useful wherever end-fire radiation is required from a compact antenna structure

    Advancing PocketQube Technology

    No full text

    Genetics of primary sclerosing cholangitis and pathophysiological implications

    No full text
    corecore